一区二区三区国产精品视频-国产精品对白刺激久久久-欧美精品激情在线91-三区二区一区在线观看

產品詳情
  • 產品名稱:PCE10 (PBDTTT-EFT)

  • 產品型號:PCE10 (PBDTTT-EFT)
  • 產品廠商:Ossila
  • 產品價格:0
  • 折扣價格:0
  • 產品文檔:
你添加了1件商品 查看購物車
簡單介紹:
PCE10 (PBDTTT-EFT)
詳情介紹:

General Information

Full name Poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)]
Synonyms PCE10, PBDTT-FTTE, PTB7-Th
Chemical formula (C49H57FO2S6)n
CAS number 1469791-66-9
HOMO / LUMO HOMO = 5.24 eV, LUMO = 3.66 eV [1]
Optical λmax = 720 nm; λedge = 785 nm; Eg (optical) = 1.58 eV
Recommended solvents Chlorobenzene, dichlorobenzene
Classification / Family

Thienothiophene, Benzodithiophene, Heterocyclic five-membered ring, Organic semiconducting materials, Low band gap polymers, Organic Photovoltaics, Polymer Solar Cells, All-PSCs, NF-PSCs.

 

1469791-66-9, PCE10, PBDTTT-EFT, PTB7-Th
Chemical structure of PCE10 (PBDTTT-EFT). Chemical formula: (C49H57FO2S6)n.

 

Applications

PCE10 (PTB7-Th, PBDTTT-EFT) is one of the new generation of OPV donor polymers that could deliver on the heralded 10/10 target of 10% efficiency and 10 years lifetime. Brand new to the Ossila catalogue, this material is already showing impressive potential with in excess of 9% efficiency reported in the literature and over 7% produced when using large area deposition processes in air with a standard architecture [1,2]. In our own labs we have achieved efficiencies of over 9%.

The advantages of PCE10 are that not only does the material lower HOMO/LUMO levels and increase the efficiencies compared to PTB7, but more significantly it is also far more stable. Early indications are that it can be handled under ambient conditions without issues, suggesting that we can look forward to measuring the long term lifetime of the devices.

PCE10 is one of the most exciting materials to have made it out of the labs in recent years and offers huge potential for more in depth research. We'll be working hard over the next few months to maximise efficiencies by optimising the device architecture, and we will provide further results as we do so. In the mean time, our current fabrication routine is below, and should you have any further questions or queries please contact us.

 

Usage Details

PCE10 JV curve in light and dark
PCE10 JV Curve: Voc = 0.785 V; Jsc = 16.81 mA/cm2; FF = 68.57%; PCE = 9.04%

 

Reference Devices

Reference devices were made on batch M261 to assess the effect of PBDTTT-EFT:PC70BM active layer thickness on OPV efficiency with the below structure. These were fabricated under inert atmosphere (N2 glovebox) before encapsulation and measurement under ambient conditions.

Glass / ITO (100 nm) / PEDOT:PSS (30 nm) / PBDTTT-EFT:PC70BM (1:1.5) / Ca (5 nm) / Al (100 nm)

For generic details please see the fabrication guide and video. For specific details please see the below condensed fabrication report which details the optical modelling and optimisation of the multilayer stack.

The PBDTTT-EFT:PC70BM solution was made in chlorobenzene (CB) at 35 mg/ml before being diluted with 3% diiodooctane (DIO) to promote the correct morphology.

Active layer thicknesses were achieved from spincasting the film at spin speeds of 2000, 2700, 3900 and 6000 rpm for 30s. Additionally, a methanol wash was performed for all devices to help remove the DIO additive. For each of these spin speeds a total of 2 substrates (3 in the case of 2700 rpm) was produced, each with 8 pixels and the data presented below represents a non-subjective (no human intervention) analysis of the best 75% of pixels by PCE (18 pixels for 2700 rpm condition, 12 pixels for each other).

Overall, the average efficiency of 8.30% PCE (9.01% maximum) was found from a 2700 rpm spin speed.

PCE10 device metrics
Figure 1: PCE, Jsc, Voc and FF for different spin speeds. Data shown is averaged with standard deviation of the best 75% of pixels. Standard deviation for Voc was ±0.01 V for each criterion. The JV curve (dark and under illumination) for the best performing device is shown below.

 


在線客服
国产一区曰韩二区欧美三区| 日本免费暖暖在线小视频| 成人黄色网破处在线播放 | 国产一区二区三区在线观| 欧美大鸡巴插入骚b| 日本美女阴户射尿| 中文字幕在线精品的视频| 操老骚逼三级黄视频 | 三级片成人京东热五月天| 日本潘金莲三级bd高清| 尤物性生活午夜在线视频| 日韩在线视频不卡一区二区三区| 大鸡巴插入阴道视频| 欧美精品第15页| 亚洲欧洲精品无码久久久| 男人吃奶大鸡巴操逼视频| 国产三级精品久久久久| 亚洲国产精品一区亚洲国产| 国产天美传媒剧免费观看| 被下药强奷到舒服的视频| 欧美日韩一区精品一区精品| 黄网官方在线观看| 人人摸人 人干人人草操| 精品无码一区二区三区无码| 国产亚洲欧美日韩在线观看一区 | 日韩精品诱惑一区?区三区| 国产精品亚洲一区二区三区极品 | 亚洲国产无线码在线| 淫荡淫水逼操烂视频| 久久99国产中文| 国产妇女乱一性一交| 极品一区二区三区av| 精品无码国产一区二区三区A| 午夜成人理论片在线观看| 大鸡巴操屁眼无码| 久久综合日韩亚洲精品色| 美女操逼视频app| 精品精品视频国产| 无码av一区二区大桥久未 | 日韩毛片一区视频免费在线观看| 亚洲精品精品精国产|